Control of Interneuron Firing by Subthreshold Synaptic Potentials in Principal Cells of the Dorsal Cochlear Nucleus
نویسندگان
چکیده
Voltage-gated ion channels amplify, compartmentalize, and normalize synaptic signals received by neurons. We show that voltage-gated channels activated during subthreshold glutamatergic synaptic potentials in a principal cell generate an excitatory→inhibitory synaptic sequence that excites electrically coupled interneurons. In fusiform cells of the dorsal cochlear nucleus, excitatory synapses activate a TTX-sensitive Na(+) conductance and deactivate a resting Ih conductance, leading to a striking reshaping of the synaptic potential. Subthreshold voltage changes resulting from activation/deactivation of these channels subsequently propagate through gap junctions, causing slow excitation followed by inhibition in GABAergic stellate interneurons. Gap-junction-mediated transmission of voltage-gated signals accounts for the majority of glutamatergic signaling to interneurons, such that subthreshold synaptic events from a single principal cell are sufficient to drive spikes in coupled interneurons. Thus, the interaction between a principal cell's synaptic and voltage-gated channels may determine the spike activity of networks without firing a single action potential.
منابع مشابه
A Simulation-Based Study of Dorsal Cochlear Nucleus Pyramidal Cell Firing Patterns
A two-variable integrate and fire model is presented to study the role of transient outward potassium currents in producing temporal aspects of dorsal cochlear nucleus (DCN) pyramidal cells with different profiles namely the chopper, the pauser and the buildup. This conductance based model is a reduced version of KM-LIF model (Meng & Rinzel, 2010) which captures qualitative firing features of a...
متن کاملCell-type specific short-term plasticity at auditory nerve synapses controls feed-forward inhibition in the dorsal cochlear nucleus
Feed-forward inhibition (FFI) represents a powerful mechanism by which control of the timing and fidelity of action potentials in local synaptic circuits of various brain regions is achieved. In the cochlear nucleus, the auditory nerve provides excitation to both principal neurons and inhibitory interneurons. Here, we investigated the synaptic circuit associated with fusiform cells (FCs), princ...
متن کاملنقش احتمالی ساخت پذیری سیناپسی هسته پشتی حلزونی در ایجاد وزوزهای سابجکتیو
Abstaract Background and Aim: Tinnitus is a specific auditory sensitivity in which the patient hears nonexistent sounds. From neurological point of view, in majority of them increment in neural activity has been proposed characterized by increase in spontaneous firing rate in central auditory system. According to a hypothesis, tinnitus is a result of abnormal synaptic plasticity and reduced inh...
متن کاملSynaptic responses and electrical properties of cells in brain slices of the mouse anteroventral cochlear nucleus.
Intracellular recordings were made from cells in brain slices of the anteroventral cochlear nucleus. Responses to electrical stimulation of the stump of the auditory nerve were: (1) all-or-none, following the stimulus with no delay, and insensitive to the removal of extracellular Ca2+, probably representing the firing of directly stimulated auditory nerve fibers, or (2) graded, excitatory posts...
متن کاملPhysiological identification of the targets of cartwheel cells in the dorsal cochlear nucleus.
The integrative contribution of cartwheel cells of the dorsal cochlear nucleus (DCN) was assessed with intracellular recordings from anatomically identified cells. Recordings were made, in slices of the cochlear nuclei of mice, from 58 cartwheel cells, 22 fusiform cells, 3 giant cells, 5 tuberculoventral cells, and 1 cell that is either a superficial stellate or Golgi cell. Cartwheel cells can ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neuron
دوره 83 شماره
صفحات -
تاریخ انتشار 2014